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Section 1

Introduction
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Sparse representation classification?

Our motivation comes from the sparse representation classification
(SRC) proposed in Wright et al. 2009 [1].

It is a simple and intuitive classification procedure making use of L1
minimization, and argued to strike a balance between
nearest-neighbor and nearest-subspace classifiers, while being more
discriminative than both.

Numerically shown to be a superior classifier for image data, robust
against dimension reduction and data contamination.
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The SRC Algorithm

Set-up: An m × n training matrix X , and the labels yi ∈ [1, . . . ,K ]
corresponding to each column xi of X . And an m× 1 testing vector x
for classification. All data are normalized to column-wise unit norm.

Find a sparse representation of x in terms of X : Solve

β̂ = arg min ‖β‖1 subject to ‖x −Xβ‖2 ≤ ε. (1)

We use homotopy by Osborne et al. 2000 [2] and orthogonal
matching pursuit (OMP) by Tropp 2004 [3] to solve this, and bound
the number of maximal iterations without using ε in our work.

Classify x by the sparse representation β̂:

g(x) = arg min
k=1,...,K

‖x −X β̂k‖2, (2)

where β̂k is the class-conditional sparse representation with
β̂k(i) = β̂(i) if yi = k and β̂k(i) = 0 otherwise. Break ties
deterministically.

Cencheng Shen (JHU) JSM2014 Presentation August 5, 2014 5 / 30



Theoretical guarantee?

Wright et al. 2009 [1] argues that SRC works well for the image data,
because empirically different classes of images lie on different
subspaces.

Towards the same direction, Elhamifar and Vidal 2013 [4] proves a
sufficient condition for L1 minimization to only choose points from
the same subspace, so that sparse representation can work optimally
for spectral clustering on data from multiple subspaces.

Chen et al. 2013 [5] applies SRC to vertex classification using
adjacency matrices and OMP, which exhibits robust performance on
graph data, but not always the best classifier.

But adjacency matrix does not enjoy the subspace property. Also
adjacency matrix has m = n such that the residual by L1
minimization is usually high at small sparsity limit.
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Our questions on SRC and L1 minimization

Q1. Since many data do not have the subspace property, is SRC
applicable beyond the subspace property?

Q2. The key step of SRC is the L1 minimization step (also widely known
as Lasso by Tibshirani 1996 [6]). Since real data is usually noisy and may
be high-dimensional (like the (dis)similarity matrices which we care a lot),
and a good residual cut-off is hard to estimate, is there a better way to
stop the L1 minimization without explicit model selection?

(e.g., Efron et al. 2004 [7] uses Mallows selection criteria for Lasso,
Wright et al. 2009 [1] uses a simple cut-off ε = 0.05, Elhamifar and Vidal
2013 [4] assumes perfect recovery for their theorem.)

Q3. As a greedy algorithm that is very easy to implement, OMP is very
popular to give an approximate solution of the exact L1 minimization, and
a suitable tool for large data processing. Is there any guarantee on its
equivalence with L1 minimization? (This is discussed by both Efron et al.
2004 [7] and Donoho and Tsaig 2006 [8])
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A simple guarantee on SRC performance

In our working paper Shen et al. 2014 [9], we provide a very coarse
error bound of SRC based on within-class principal angles and
between-class principal angles. In short, if the former is “smaller”
than the latter, SRC may succeed.

This can help us find meaningful models that can work with SRC
beyond the subspace property.

For example, we further prove that SRC is a consistent classifier for
degree-corrected SBM (under one mild condition) applied on the
adjacency matrix.

It is conceptually similar to the condition in Elhamifar and Vidal 2013
[4], where they also impose a condition so that data on the same
subspace is sufficiently close comparing to data of different subspaces.
But there are intrinsic differences in the assumption, condition and
the proof.
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And...

Q1 partly solved?! But finite-sample performance is not necessarily
optimal.

What about Q2 and Q3?

Let us use positive L1 minimization!
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Positive L1 minimization

Instead of the usual L1 minimization, we add one more constraint

β̂ = arg min ‖β‖1 subject to ‖x −Xβ‖2 ≤ ε and β ≥ 0n×1, (3)

where the ≥ sign is entry-wise. The positive constraint can be easily
added to homotopy and OMP with no extra computation.

It is briefly mentioned in the Lasso implementation using homotopy in
Efron et al. 2004 [7], and called positive Lasso.

So far we cannot find any other investigation on positive L1
minimization, in spite of the rich literature in L1/L0 area.
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Impact on SRC?

It usually stops much earlier than usual L1 minimization.

And we prove that OMP is more likely to be equivalent to L1 or the
true model under the positive constraint.

It is a bias-variance trade-off?
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Section 2

Numerical experiments
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Numerical experiments

For all the data, we randomly split half for training and the other half
for testing, and plot the hold-out SRC error against the sparsity level,
with iteration limit being 100.

Then we plot the sparsity level histogram of usual/positive
OMP/homotopy.

In order to show that OMP and L1 is more likely to be equivalent, we
plot the histogram of the following matching statistic

p =
n∑

i=1

Iβ̂(i)>0Iβ(i)>0/min{
∑

Iβ̂(i)>0,
∑

Iβ(i)>0}. (4)

So if β̂ and β have nonzero entries at same positions (or a subset of
another), p = 1; and increasing mismatch will degrade the p towards
0.

We also show the residual histogram of usual/positive L1
minimization.
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SRC errors for Extended Yale B Images

Extended Yale B database has 2414 face images of 38 individuals under
various poses and lighting conditions. So m = 1024, n = 1207, and
K = 38. SRC under positive constraint is roughly worse by 0.04.
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SRC errors on CMU PIE Images

The CMU PIE database has 11554 images of 68 individuals under various
poses, illuminations and expressions. m = 1024, n = 5777, and K = 68.
SRC under positive constraint is roughly worse by less than 0.01.

Cencheng Shen (JHU) JSM2014 Presentation August 5, 2014 15 / 30



L1 comparison in sparsity level for Yale Image

The left side is the number of selected data by usual homotopy/OMP, the
right side is that for positive homotopy/OMP.
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OMP L1 equivalence for Yale Image

The left is OMP and homotopy equivalence without positive constraint,
the right is with positive constraint.
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Residuals for Yale Image

The left is the residual of usual homotopy, the right is the residual of
positive homotopy. CMU PIE dataset has similar plots too!
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SRC errors on Political Blogs Network

The Political Blogs data is a directed graph of 1490 blogs on conservatives
and libertarians, so we have a 1490× 1490 adjacency matrix. Among
which 1224 vertices have edges, so m = 1224, n = 612 and K = 2. The
data can be modeled by DC-SBM. We also add LDA/9NN ◦ ASE for
comparison.
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L1 comparison in sparsity level for PolBlogs Network
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OMP L1 equivalence for PolBlogs Network
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Residuals for PolBlogs Network
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SRC errors on YouTube Video

This is a dataset on YouTube game videos containing 12000 videos with
31 game genres. We randomly use 10000 videos and vision hog feature,
where we have m = 650, n = 5000, and K = 31. We also add LDA/9NN
◦ PCA for comparison.
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L1 comparison in sparsity level for YouTube Video
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OMP L1 equivalence for YouTube Video
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Residuals for YouTube Video
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Section 3

Conclusion
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Conclusion

In this talk, we find partial solutions to our three questions.

Q1 We extend SRC beyond the subspace property and generalize it to
the graph data theoretically. We also argue that SRC with positive
constraint is reasonable.

Q2 We show that positive L1 minimization terminates much earlier
and yield a more parsimonious solution than usual L1 minimization
(though mostly numerically). This is achieved without any additional
model selection, at the cost of slightly larger residual.

Q3 From an algorithmic point of view, we show that OMP is more
likely to be equivalent to the exact L1 minimization/true model under
the positive constraint. The improvement is very significant in all our
experiments for the equivalence of OMP and homotopy.

However, there are still many unknowns...
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Thank you!
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